
Rényi entanglement entropies in quantum dimer models: from criticality to topological order

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

J. Stat. Mech. (2012) P02003

(http://iopscience.iop.org/1742-5468/2012/02/P02003)

Download details:

IP Address: 132.166.62.115

The article was downloaded on 18/10/2012 at 11:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-5468/2012/02
http://iopscience.iop.org/1742-5468
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.S
tat.M

ech.
(2012)

P
02003

ournal of Statistical Mechanics:J Theory and Experiment
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Abstract. Thanks to Pfaffian techniques, we study the Rényi entanglement
entropies and the entanglement spectrum of large subsystems for two-dimensional
Rokhsar–Kivelson wavefunctions constructed from a dimer model on the
triangular lattice. By including a fugacity t on some suitable bonds, one
interpolates between the triangular lattice (t = 1) and the square lattice (t = 0).
The wavefunction is known to be a massive Z2 topological liquid for t > 0 whereas
it is a gapless critical state at t = 0. We mainly consider two geometries for the
subsystem: that of a semi-infinite cylinder and the disc-like set-up proposed
by Kitaev and Preskill (2006 Phys. Rev. Lett. 96 110404). In the cylinder
case, the entropies contain an extensive term—proportional to the length of the
boundary—and a universal subleading constant sn(t). Fitting these cylinder
data (up to a perimeter of L = 32 sites) provides sn with a very high numerical
accuracy (10−9 at t = 1 and 10−6 at t = 0.5). In the topological Z2 liquid phase we
find sn(t > 0) = − ln 2, independent of the fugacity t and the Rényi parameter n.
At t = 0 we recover a previously known result, sn(t = 0) = −1

2 ln(n)/(n − 1)
for n < 1 and sn(t = 0) = − ln(2)/(n − 1) for n > 1. In the disc-like
geometry—designed to get rid of the boundary contributions—we find an entropy
sKP
n (t0) = − ln 2 in the whole massive phase whatever n > 0, in agreement with

the result of Flammia et al (2009 Phys. Rev. Lett. 103 261601). Some results
for the gapless limit RKP

n (t → 0) are discussed.
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4.2. Thermodynamical entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3. Scaling when t → 0 and L → ∞ with fixed L · t . . . . . . . . . . . . . . . 13

4.4. Entropy of a zig-zag line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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1. Introduction

It is now widely recognized that the entanglement entropy is a useful quantity to probe
many-body quantum states. It can be used to detect critical states in one-dimensional
chains, through the celebrated logarithmic divergence [1]–[4]. In two dimensions it can
be used to characterize (massive) topologically ordered states. In particular, it allows
us to distinguish a topological wavefunction from a more conventional disordered and
featureless state. In a gapped phase the entanglement entropy of a large subsystem
contains a contribution proportional to the length (in two dimensions) of its boundary
plus a subleading term Stopo which contains some information about the nature of the
phase. In a state with topological order, this subleading term is related to the total
quantum dimension, that is, to the content in elementary excitation [5]–[7]. This idea
has been successfully applied to some fractional quantum Hall states [8]–[10]. Extracting
the subleading term in lattice models is not a trivial task [6, 7] but it was first shown to
be feasible using quantum dimer wavefunctions on the triangular lattice [11]. Since the
work of Moessner and Sondhi [12] these types of states have been intensively studied since
they offer some rather simple realization of topologically ordered states with non-trivial
finite-size effects and finite correlation length (contrary to toric-code-like models [13, 14]).

In this paper we also consider some dimer wavefunctions—named after Rokhsar and
Kivelson (RK) [15]—which are linear superpositions of fully packed dimer coverings on
the triangular lattice. By including a fugacity on some suitable bonds, one continuously
interpolates between the triangular lattice (t = 1) and the square lattice (t = 0). In the
triangular case the wavefunction is known to be a massive Z2 topological liquid [12, 16, 17],
whereas it is a gapless critical state at t = 0 [15]. Exploiting previous results [11, 18]
on the reduced density matrix (RDM) of RK states, we can obtain not only the
entanglement entropy but also the full entanglement spectrum on large systems. Using
extensively the Pfaffian formulation of the classical dimer partition function [19], as well
as some perturbation theory for determinants [20, 16], we perform calculations in the
thermodynamic limit while keeping the boundary length finite.

In the cylinder geometry we can treat the infinite-height limit and perimeters up to
L = 32 (38 at t = 0). In the disc-like geometry proposed by Kitaev and Preskill [6], we
perform exact calculations for discs of radii up to ρ � 4.5 lattice spacings embedded in an
infinite system, therefore extending significantly the previous entanglement calculations
on triangular dimer wavefunctions [11]. This technique allows us to confirm the value
Stopo = − ln(2) with high precision in the whole massive phase (not only at the
triangular point t = 1). This value turns out not to depend on the Rényi parameter,
in agreement with the argument by Flammia et al [21]. We also discuss the structure of
the entanglement spectrum, showing that it contains a non-degenerate ‘ground state’ and
a gap. In section 4.6, a microcanonical point of view is used to relate the density of states
of the entanglement spectrum and the Rényi entanglement entropies.

When t = 0 the dimers are restricted to the bonds of a square lattice. Although
non-generic1, such critical RK wavefunctions associated with some conformally invariant
critical points are useful since they offer one of the very few situations where one can study
the entanglement in a critical wavefunction in more than one dimension [25, 26, 18, 27, 28].

1 They correspond to fine-tuned multi-critical points [22]–[24].
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Figure 1. Triangular lattice with cylindrical boundary conditions (Lx = 6,
Ly = 5). Each ‘diagonal link’ (dotted lines) has fugacity t, while the others
have fugacity 1.

Another point of view is that, for long cylinder geometries, the entanglement in these
two-dimensional systems is related to the Shannon entropies in—now generic—quantum
critical chains [18], [29]–[31]. The subleading constant in the cylinder geometry depends
on the compactification radius [26, 18, 27, 28] and shows a singularity at some critical value
of the Rényi parameter [31]. The result in a Kitaev–Preskill geometry is less clear and we
discuss our numerical results at the end of section 6.

2. Entanglement entropy as a Shannon entropy

After a brief introduction to dimer RK wavefunctions [15], we review how one can
construct the RDM and Schmidt decomposition for these states.

2.1. Rokhsar–Kivelson wavefunctions

We start from a classical two-dimensional hard-core dimer model on a triangular lattice,
with fugacity t on ‘diagonal’ links (figure 1). This fugacity allows us to interpolate between
the square lattice (t = 0) and the isotropic triangular lattice (t = 1).

The classical partition function of this system is

Z =
∑

c

e−E(c) =
∑

c

t# diagonal dimers, (1)

where the sum runs over all dimer coverings c. When t = 0 (square lattice), the model
is known to be critical [20, 32] and its long range behavior is described by a compact free
field [33, 34]. Otherwise it has a finite correlation length [12, 16, 17]. An Hilbert space is
then constructed by associating a basis state |c〉 to each classical dimer configuration c.
Different classical configurations correspond to orthogonal states. The RK wavefunction
is the normalized linear combination of all basis states with an amplitude equal to the
square root of the classical weight:

|RK〉 =
1√Z
∑

c

e−E(c)/2|c〉. (2)
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http://dx.doi.org/10.1088/1742-5468/2012/02/P02003


J.S
tat.M

ech.
(2012)

P
02003
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Following Henley [35] one can construct some local Hamiltonians for which
equation (2) is an exact ground state, but the precise form of these Hamiltonians will
not be used in the following.

2.2. Rényi entanglement entropy

We divide the system into two parts A and B. Each subsystem is a set of bonds, and its
degrees of freedom are the corresponding dimer occupancies. The RDM of A is obtained
by tracing over the degrees of freedom in B:

ρA = TrB |RK〉〈RK|. (3)

Then, the Rényi entanglement entropy is defined as

Sn =
1

1 − n
ln Tr ρn

A, (4)

where n is not necessarily an integer. Two limits are of interest. For n → 1, Sn reduces
to the von Neumann entanglement entropy:

S1 = SvN = −Tr ρA ln ρA. (5)

For n → ∞, only the largest eigenvalue pmax of the RDM matters:

S∞ = − ln pmax. (6)

This quantity is also called single-copy entanglement. To compute all the Rényi entropies,
we need all the eigenvalues of the RDM. In the following, we shall see that calculating
each eigenvalue amounts to solving a combinatorial problem. The procedure has been
discussed in detail elsewhere [11, 18] and is recalled below for completeness.

2.3. Schmidt decomposition

We consider the geometry of an infinite cylinder cut into two parts, as in the left of
figure 2. The reasoning is the same for the other geometries we considered. The sites
which touch a bond in A and an bond in B (red circles in figure 2) are called boundary
sites. We assign a spin σj to each boundary site: σj = ↑ if the site is occupied by a dimer
in A and σj = ↓ if it is occupied by a dimer in B. We denote by

|i〉 = |σ1, σ2, . . . , σLx〉 (7)

the whole spin configuration at the boundary.
Now, let EA

i (resp. EB
i ) be the set of dimer configurations in A (resp. B) compatible

with |i〉 at the boundary. Thanks to the hard-core constraint, they share no common
element:

EA
i ∩ EB

i′ = ∅, i �= i′. (8)

Each configuration c can be written as

c = a ∪ b, a ∈ EA
i , b ∈ EB

i (9)

and the energy decomposed as

E(c) = EA(a) + EB(b). (10)
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Figure 2. Partition of the lattice in two subsystems A (red bonds) and B (blue
bonds). Left: the subsystems A and B are semi-infinite cylinders. Boundary
sites are marked by filled red circles. Each boundary site can either be occupied
by a dimer in A (spin ↑) or a dimer in B (spin ↓).

This allows us to write the RK state as

|RK〉 =
1√Z
∑

i

⎡

⎣
∑

a∈EA
i

e−EA(a)/2|a〉
⎤

⎦×
⎡

⎣
∑

b∈EB
i

e−EB(b)/2|b〉
⎤

⎦ . (11)

Defining a new normalized set of RK states in A and B

|RKA
i 〉 =

1√
ZA

i

∑

a∈EA
i

e−
1
2
EA(a)|a〉, (12)

|RKB
i 〉 =

1√
ZB

i

∑

b∈EB
i

e−
1
2
EB(b)|b〉, (13)

withZΩ
i =

∑

ω∈EΩ
i

e−EΩ(ω) (Ω = A, B), (14)

equation (2) becomes

|RK〉 =
∑

i

√
pi|RKA

i 〉|RKB
i 〉, (15)

with

pi =
ZA

i ZB
i

Z . (16)

Equation (15) is actually the Schmidt decomposition of the RK state (the orthogonality
of the Schmidt vectors is guaranteed by equation (8)), and the {pi} are the eigenvalues of
the RDM:

ρA =
∑

i

pi|RKA
i 〉〈RKA

i |. (17)
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This way, one can obtain the Rényi entropy:

Sn =
1

1 − n
ln

(
∑

i

pn
i

)
. (18)

The entanglement entropy calculation has been reduced to finding some probabilities in
the classical dimer problem. In section 3 we will show that, using standard Pfaffian
techniques, one can obtain exact formulae for the pi.

3. Classical probabilities

3.1. Pfaffian

The Pfaffian of a (2n × 2n) antisymmetric matrix M is defined as

Pf M =

′∑

π∈S2n

ε(π)Mπ1π2Mπ3π4 · · ·Mπ2n−1π2n, (19)

where ε(π) denotes the signature of a permutation π. The sum runs over all permutations
of {1, 2, . . . , 2n} satisfying the constraints

π2i−1 < π2i, 1 < i < n

π2i−1 < π2i+1, 1 < i < n − 1.
(20)

A very important relation is

(Pf M)2 = det M. (21)

It is especially useful because it allows us to compute the Pfaffian numerically in a time
proportional to n3 using standard determinant routines (and sometimes analytically).

3.2. Kasteleyn theory

The problem of enumerating dimer configurations on a planar lattice is a classic
combinatorial problem, which was solved independently by Kasteleyn [19] and Temperley
and Fisher [36]. We consider the case t = 1 for simplicity but the generalization to any t is
straightforward. For any planar graph, the partition function (number of dimer coverings)
is given by

Z = |Pf K|, (22)

where K is an antisymmetric matrix constructed as follows. Putting arrows on all the
links, a matrix element of K is

Kij =

⎧
⎪⎨

⎪⎩

+1 if the arrow points from i to j

−1 if the arrow points from j to i

0 if i and j are not nearest neighbors.

(23)

The Kasteleyn matrix must also satisfy the clockwise-odd rule: the product of the
arrow orientations (±1) around any elementary plaquette (running clockwise) has to be
−1. Kasteleyn showed that (i) such a matrix K exists for any planar graph and (ii) it

doi:10.1088/1742-5468/2012/02/P02003 7
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Figure 3. Kasteleyn orientation of the (Lx = 6, Ly = 5) lattice (a weight t is
given to ‘diagonal’ links). Blue arrows: orientation of the bonds. Green arrows:
bonds present because of periodic boundary conditions along the x axis (see [37]).
Their orientations are reversed compared to their ‘bulk’ counterparts.

ensures that all terms in the sum have the same sign (the signature of the permutation
always compensates that of the product of matrix elements). It is immediate to check
that (ii) implies equation (22).

A Kasteleyn matrix obeying equation (22) can also be found for cylindrical boundary
conditions. An example for the triangular lattice with cylindrical boundary conditions2

is shown in figure 3.
In the following we will demonstrate how each probability pi can be computed as a

determinant, taking the example of the cylinder geometry.

3.3. Classical probabilities

To find the probabilities of equation (16), we need to compute ZA
i ZB

i , which is the
partition function restricted to dimer configurations compatible with the boundary spin
configuration |i〉 = |σ1, . . . , σLx〉. It can be evaluated as the Pfaffian of a modified
Kasteleyn matrix:

ZA
i ZB

i = PfK(i) (24)

where K(i) is deduced from K by removing the appropriate links in a simple way. If
σj = ↑, a dimer emanating from the boundary site j has to be in A and we remove links
in B emanating from site j. If σj = ↓ we remove links in A emanating from site j. See
figure 4 for two examples, one with the boundary configuration |i〉 = |↑↓↓↑↑↓〉 and one with
|i〉 = |↑↑↑↑↑↑〉. The computation of any such probability apparently requires the ratio of
two LxLy × LxLy determinants. However, using a known trick [20], the computation can
be greatly simplified.

3.4. Perturbation theory for determinants in an infinite system

Following [20], p2
i may be written as

p2
i = det(1 + K−1E (i)), E (i) = K(i) −K. (25)

2 In the case of toroidal boundary conditions the situation is slightly more complicated, and the number of dimer
coverings is given by a linear combination of four Pfaffians, see [37] for more details.
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Figure 4. Two examples with |i〉 = |↑↓↓↑↑↓〉 on the left, and |i〉 = |↑↑↑↑↑↑〉 on
the right. Filled red circle: boundary site occupied by a dimer in A (spin ↑).
Empty red circle: boundary site occupied by a dimer in B (spin ↓). To ensure
that a boundary site be occupied by a dimer in A (resp. B), all edges in B (resp.
A) coming from this site have to be removed. Notice that after the removal, A
and B are disconnected. Black circles filled in gray are sites which are connected
to a boundary site through a link that has been removed. As explained in the
text, the size of the determinant is given by the number of circles. pi is therefore
a 16×16 determinant for the configuration on the left and a 12×12 determinant
for the configuration on the right.

The important point is that the matrix element E (i)
rr′ is non-zero only if the link r ↔ r′ has

been removed. Then, a matrix element of K−1E (i) is
(K−1E (i)

)
rr′ =

∑

s

K−1
rs E (i)

sr′. (26)

It is non-zero only if r′ is a site belonging to a removed link. We name these sites ‘vicinity
sites’, and they of course depend on the boundary configuration |i〉. A boundary site is
automatically a vicinity site, but the converse is not true, however. If we denote by Ei the
set of vicinity sites and by ni their number, K−1E (i) is an LxLy × LxLy matrix, but only
ni columns are non-identically zero. Then, using the antisymmetry of the determinant,
any cell with indices r and r′ not both in Ei can be set to zero by appropriate linear
combinations of rows and columns. Therefore, the determinant may be computed as its
restriction to the sites in Ei:

p2
i = det

((
1 + K−1E (i)

)
|Ei

)
. (27)

This so-called ‘perturbation theory for determinants’ has been previously used in [20]
to compute exactly the monomer–monomer correlation on the square lattice in the
thermodynamic limit (L, Ly → ∞), and further extended in [16] to the triangular
lattice. For computational purpose this is a huge simplification, because the size of
the determinant has been reduced from LxLy to ni ∼ O(Lx), and the total system we
are interested in can be infinite (Ly → ∞). In contrast also to the transfer matrix
approach [18], this method allows us to treat any shape of boundary. This will be
particularly useful while studying the geometry proposed by Kitaev and Preskill [6].

For this to work we also need to compute exactly certain matrix elements of the
inverse Kasteleyn matrix K−1. This can be done using standard Fourier and integral
techniques, see appendix A.
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Let us now specify the case of the (infinitely long) cylinder geometry cut into two
parts. An example of spin configuration is shown in figure 4, where boundary sites are
represented by red circles (filled or empty, depending on the spin). Other vicinity sites
are circles filled in gray. It is easy to check that 2Lx ≤ ni ≤ 3Lx for all boundary
configurations. Since there are a priori 2Lx boundary configurations and each probability
is of complexity ∼n3

i , the Rényi entropy can be evaluated in a time ∼L3
x×2Lx . This allow

us to go to relatively large system sizes of order Lx ∼ 30.

4. Results for the infinite cylinder

When the height Ly is infinite, the entropies Sn only depend on the perimeter Lx = L.
As usual, the leading term is non-universal and scales with L, and we are interested in
the first subleading contribution sn:

Sn(L) � αnL + sn + o(1). (28)

4.1. Topological entanglement entropy and Rényi index

For gapped topological wavefunctions, the subleading constant s1 in the von Neumann
entropy has been shown to be related to the content of the phase in terms of fractionalized
particles, and to the total quantum dimension D in particular [6, 7]: s1 = − ln(D). In
the original works the subleading constant s1 was extracted by combining the entropies
of different subsystems in a planar geometry. We show here that the subleading term can
be extracted in a—somewhat simpler—cylinder geometry (see also [10]).

For t > 0 the present dimer wavefunctions realize the simplest topological phase,
the so-called Z2 liquid with quantum dimension D = 2. One therefore expects to have
s1 = − ln 2 in the whole topological phase. So far, this has only been checked numerically
at t = 1 [11]. In addition, [21] argues that this topological entanglement entropy is
independent of the Rényi index n. We present here some results for infinitely high cylinders
for various values of t and n, which support this result. The convergence to the topological
entropy is exponentially fast, as can be seen in figure 5. For generic values of t and n,
this allows us to get this constant with a very high accuracy: for example, at t = 1 our
best estimate is |s1(t = 1) + ln 2| � 10−9. It is widely believed that in massive phases the
topological entropies (subleading terms) are independent of short-range correlations, but
this is not proven. The present results, which strongly indicate that sn = − ln(2) for any
t > 0, therefore brings some additional support to the robustness of topological entropies.
In general finite-size effects get larger when increasing n at fixed t, and it is more advisable
to numerically study low-n Rényi entropies. However, as is shown in B.2, the calculation
for n → ∞ simplifies greatly and the result s∞(t > 0) = − ln 2 can even be obtained
rigorously. We further discuss this result in section 4.5. At fixed n the convergence is also
less clear when t is small since the correlation length ξ(t) diverges when approaching t = 0
and the finite-size effects become very important when L � ξ(t). Still, the curve sn(t > 0)
approaches − ln 2 when L → ∞. The data plotted in figure 6 are indeed compatible with
sn(t) = − ln 2 for all n = 0.5, 1, 2 and t > 0. The scaling close to t = 0 will be discussed
later in section 4.3.
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Figure 5. Number of correct digits in the numerical estimate of the topological
constant, as a function of the number of boundary sites. For the cylinder
geometry we show the data for t = 1 (red circles) and t = 0.5 (blue
triangles). The number of boundary sites is just L in this case and the
estimate is obtained by a fit to aL + s1 for two even consecutive values of L.
The convergence to the correct value is exponentially fast, with an effective
correlation length close to the dimer–dimer correlation length (which can have
an imaginary part [16, 17], hence the oscillations we observe). For comparison
we also show the data in the Kitaev–Preskill geometry, slightly anticipating
section 6.

Figure 6. Subleading constants sn(t) for three different values of the Rényi
parameter (n = 0.5, 1, 1.5). For each t and n, sn(t) is extracted from Sn(L) using
two consecutive even values of L (up to L = 32). In the thermodynamic limit
the results are expected to converge to sn(t) = − ln 2 for all n > 0 and t > 0.

4.2. Thermodynamical entropy

The behavior for large values of the Rényi index n is displayed in figure 8 (triangular
dots). Although it is roughly constant and close to − ln(2), due to the finite size of the
system there are some visible deviations for n � 3. This is even more visible if we consider
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Figure 7. Thermodynamic entropy per site ST
n /L (monotonically increasing,

right axis) and its associated ‘specific heat’ (peaked at n � 0.25, left axis)
Cv = −n dST/dn. Fugacity t = 1.

a slightly different entropy, ST
n , defined as

ST
n = (1 − ∂n) ln (Zn) (29)

Zn =
∑

i

pn
i (30)

which can also be written as the Shannon entropy associated with the normalized
probabilities p̃i:

ST
n = −

∑

i

p̃i ln(p̃i) with p̃i =
pn

i

Zn

. (31)

Both entropies match at n = 1 (ST
n=1 = Sn=1) and are simply related otherwise:

ST
n = (1 − n∂n)((1 − n)Sn). The ‘thermodynamic’ entropy ST also has a leading term

O(L) and a subleading term, sT
n . The extensive (and non-universal) part is plotted in

figure 7 as a function of the ‘temperature’ 1/n. To stress the similarity with the usual
statistical mechanics, we also plotted the associated ‘specific heat’ defined as a derivative
of ST: Cv = −n(dST/dn).

The subleading term sT
n is plotted in figure 8 (crosses). It is very close to − ln(2)

at small n, but goes to sT = 0 when n → ∞. This is indeed expected since the
thermodynamic entropy ST

n=∞—which corresponds to zero ‘temperature’—is equal to the
log of the degeneracy of the configuration with the highest probability, which is non-
degenerate in our case. However, the crossover from − ln(2) to 0 takes place at values of
n which are larger and larger when L → ∞. This can be checked in the inset of figure 8,
where the numerical data appear to be correctly fitted by

sT
n�ln(L) ∼ L2 exp(−nΔ) (32)

sT
n�ln(L) ∼ − ln(2) (33)
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Figure 8. Large n behavior of the subleading constant sn(t = 1) of the Rényi
entropy, and sT

n (t = 1), the subleading constant of the thermodynamical entropy.
They both give − ln(2) for small n, but differ for large n. This is a finite-size
effect: as shown in the inset, sT ∼ L2 exp(−Δn) for large n. We thus have
s � sT = �− ln(2) up to n ∼ ln(L).

where Δ � 1.32 is the entanglement gap at t = 1. We finally note that the calculation
of pmax given in appendix B.2 proves rigorously that limL→∞ limn→∞ sn = − ln(2) and
limL→∞ limn→∞ sT

n = 0.

4.3. Scaling when t → 0 and L → ∞ with fixed L · t

The critical point t = 0 has already been studied [18, 31] and is known to give

sn(0) =

⎧
⎪⎨

⎪⎩

ln R − ln n

2(n − 1)
, 0 < n ≤ 1

n

n − 1
ln R, n > 1

(34)

sT
n (0) =

{
ln
(√

nR
)− 1

2
, 0 < n ≤ 1

0, n > 1,
(35)

where the compactification radius is R = 1 (free fermions) for the present dimer
wavefunctions, but could be tuned by adding some dimer–dimer interactions [34].

The correlation length ξ(t) diverges as ξ(t) ∼ t−1 when t � 1 [16]. In figure 9 we
plot the subleading constant sn(t, L) as a function of L · t � L/ξ(t). It appears that, for a
given value of n, the data curves corresponding to different values of t and L approximately
collapse onto each other. This shows that, when the system size L is much bigger than
the correlation length ξ(t) ∼ t−1, we find the correct topological entanglement entropy
sn = − ln(2). On the other hand, when L is of the same order of magnitude than ξ(t)
(and much larger than the lattice spacing), sn turns out to be some non-trivial function
of n and L · t. When L · t → 0 the system effectively behaves as a critical system of dimers
on a square lattice and sn converges to equation (34), as expected.
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Figure 9. Subleading constants sn as a function of t × L. For each value of n,
the data corresponding to different values of t and L appear to be well described
by a function of t × L only.

Figure 10. Subleading constants for the entanglement entropy calculated
numerically in two geometries: half-infinite cylinder and zig-zag strip (see text).

4.4. Entropy of a zig-zag line

As explained in section 2.3, the eigenvalues of the RDM of a half-infinite cylinder are the
classical probabilities of the ‘spin’ configurations |i〉 = |σ1, σ2, . . . , σL〉. But one may also
consider a zig-zag line and the probabilities pα of the dimer configurations on that line.
The ‘spins’ are now replaced by the dimer occupancies (say, 0 or 1) of the zig-zag bonds.
These probabilities can be computed using exactly the same perturbed-Pfaffian method
as before. However, in terms of entanglement, the entropy we compute is that of the ‘zig-
zag’ chain shown on the right of figure 10. Although the probabilities are computed in a
very similar way, this calculation does not describe the entanglement of a two-dimensional
subsystem, but that of a one-dimensional line winding around the cylinder.

The associated entropies, already considered in [11], have a leading term proportional
to L and a subleading contribution of order O(L0). The results, plotted in figure 10, show
that the subleading constant s1 has a dependence on t and system size L which is very
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similar to that of the half-cylinder entropy. It is possible that, as a function of L · t, the
zig-zag line and half-infinite cylinder converge to the same curves for sufficiently large L.
In any case, the zig-zag results clearly converge to − ln(2) in the thermodynamic limit for
t > 0.

One may ask if the zig-zag entropy would also give access to the quantum dimension
for a general topologically ordered wavefunction (not of RK type, and even not based on
dimers). We believe that it is not the case. The present dimer RK states enjoy a special
property: once the dimer occupancies are fixed along the zig-zag chain, the upper and
lower half-cylinders are completely decoupled. For this reason, the entropy of the zig-zag
chain is very close to that of a half-cylinder. This would not hold for more generic states
and a thick strip (sufficiently large compared to the correlation length) would probably
be required to access the quantum dimension in general.

4.5. Infinite Rényi and bipartite fidelity

As already emphasized, the infinite-n Rényi limit selects the largest eigenvalue of the
RDM, which is the probability of the most likely configuration in the dimer language:

S∞ = − ln pmax. (36)

For the cylinder geometry the corresponding boundary configuration |imax〉 is particularly
simple (see figure 4 for a graphical representation):

|imax〉 = |↑↑ · · · ↑ 〉, (37)

and pmax can be expressed as a ratio of simple partition functions:

pmax = lim
Ly→∞

[Zcyl(Lx, Ly/2)]2

Zcyl(Lx, Ly)
, (38)

where Zcyl(L, h) is the partition function for dimers on a finite cylinder of length L and
height h. As detailed in appendix B, we then find the following expression for S∞:

S∞ = −
1≤m≤L/2∑

k=(2m−1)π/L

ln

(
1

2
+

1

2

sin2 k − t cos k√
t2 + sin2 k + sin4 k

)
, (39)

from which one can extract the subleading constant:

s∞(t) =

{
0, t = 0

− ln 2, t > 0.
(40)

This result has already been mentioned in section 4.1. The entropy S∞ can also be
considered from a different point of view. |RK〉 is the ground state of the Rokhsar–
Kivelson Hamiltonian and lives on a cylinder of length L and height h. This Hamiltonian
may be written as

H = HA∪B = HA + HB + H
(int)
A,B , (41)

where HA (resp. HB) is the Rokhsar–Kivelson Hamiltonian restricted to sites in A (resp.

B). We have [HA, HB] = 0 and H
(int)
A,B contains all the interactions between A and B. If

we denote by |A〉 (resp. |B〉) the ground state of HA (resp. HB), |A⊗B〉 = |A〉⊗ |B〉 the
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ground state of HA + HB and by |A ∪ B〉 = |RK〉 the ground state of HA∪B, then pmax

can be reformulated as

pmax = |〈A ∪ B|A ⊗ B〉|2. (42)

Taking minus the logarithm we get

S∞ = − ln |〈A ∪ B|A ⊗ B〉|2. (43)

The rhs of equation (43) has been studied in [38] under the name ‘logarithmic bipartite
fidelity’ (LBF). The (infinite) Rényi entanglement entropy and the LBF are a priori not
related, but we find that they are simply equal for this particular RK wavefunction. In
other words, performing a Schmidt decomposition on the total wavefunction |A∪B〉, the
Schmidt state with the highest Schmidt value is nothing but the ground state of HA +HB,
the RK Hamiltonian, where all interactions between A and B were switched off.

However, this relation does not hold exactly in general. For instance, in the Kitaev–
Preskill or Levin–Wen geometry the boundaries are not straight and in that case the
boundary dimer configuration |imax〉 is not as simple as for the cylinder. Still, as pointed
out in [38], the equivalence between the LBF and S∞ can hold for some more complex
topological states such as the string-net states constructed by Levin and Wen [7]. We
expect that for a generic (i.e. non-RK) gapped state, the subleading term in the LBF
and S∞ should be the same in the thermodynamic limit (although, due to some mismatch
at short distances, the extensive terms will differ). The argument is as follows: starting
from a string-net state where the correspondence works, we adiabatically modify the
wavefunction towards the state we are interested in (without closing the gap). Doing so
it is natural to expect that only the short-distance properties of the entanglement will be
modified (hence the ∼ L term) but not the subleading constant s∞, which is expected to
be free from the contribution of local correlations. Although the robustness to changes
in local correlations is not proven in general, we provide in appendix B a rigorous proof
that the subleading term s∞ is equal to − ln 2 in the whole massive phase of the model
(t > 0).

4.6. Entanglement gap and entanglement spectrum

The spectrum of the RDM contains some rich information about the system. Looking
at such spectra has been particularly fruitful in the context of the quantum Hall effect
(QHE), where the entanglement spectrum was shown [39] to reflect some properties of
the chiral gapless excitations which can propagate along an edge [40]. With the RK
wavefunctions the RDM eigenvalues are simple classical probabilities and we thus have a
relatively easy access to the entanglement spectra of large systems.

Such spectra shown in figures 11–12, where the probabilities pi have been converted
to ‘energies’: Ei = − ln(pi/pmax). The first observation is that these spectra have a unique
ground state and a gap Δ = E1 to the first ‘excitation’. This is true not only in the Z2

liquid (t > 0) but also for the critical RK wavefunction at t = 0. So, contrary to the
QHE where a well-defined set of low-energy levels are separated from the rest [39, 41],
there is no apparent low-energy structure in the spectrum but a single ‘ground state’.
One could have naively expected the entanglement gap to close when reaching the critical
point at t = 0, but this is not the case. As can be seen in figure 12, the entanglement
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Rényi entanglement entropies in quantum dimer models: from criticality to topological order

Figure 11. Entanglement spectrum for L = 12 and for t = 1, 0.7, 0.3 and 0 from
left to right.

Figure 12. Entanglement gap as a function of t. It is maximum at t = 0 (square
lattice) and decreases slowly to zero when t → ∞. Except very close to t = 0
(inset) the curves for L = 16 and 20 are practically indistinguishable on the scale
of the figure, signaling negligible finite-size effects.

gap remains finite all the way from t = 0 to 1 (it vanishes only at t = ∞). We have, for
instance, Δ = 1.323 14 at t = 1 (exponentially fast convergence as a function of L) and
Δ = 2 ln(π) � 2.29 at t = 0.3 A possible interpretation is the following: the entanglement
spectrum is indeed related to the spectrum of the excitations that would propagate along

3 This analytical result for Δ in the thermodynamic limit of the square lattice can be obtained by noticing that
the configuration with the highest probability is |↑↑ · · · ↑〉 while the next configuration has two consecutive flipped
spins |↑↑↓↓↑ · · ·〉. One can check that, for t = 0, the ratio p1/pmax of these two probabilities is nothing but the
square of the probability for a bond located at the edge of a semi-infinite square lattice to be occupied by a dimer.
The latter probability has been computed in [20] and is equal to 1/π, which gives Δ = − ln(p1/pmax) = 2 ln(π).
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Figure 13. Logarithm of the density of states ρ associated with the entanglement
spectrum of a half-infinite cylinder as a function of the ‘energy’ per site e =
(E − E0)/L (arbitrary units). Top: t = 0 (square lattice), bottom: t = 1
(triangular lattice). To display the energy range which contributes to the
von Neumann entropy S1, the probability distribution p(e) ∼ ρ(e) exp(−neL)
is also plotted for n = 1. System size: L = 28.

an edge. However, in the dimer systems we consider, there are no gapless edge excitations,
even though the bulk may be gapless for t = 0.

In the thermodynamic limit, it is possible to adopt a microcanonical point of view
where the entropy S(e) is simply related to the density of states:

S(e) = ln(ρ(e)) (44)

with

ρ(e) =
∑

i

δ(e − Ei/L). (45)

Knowing the entropy S(e) from the spectrum, the energy e(n) can be obtained as a
function of the Rényi index n by inverting

dS

de
= n(e). (46)

The entropy Sn is then obtained as

Sn = ln(ρ(e(n))). (47)

We conclude that, for sufficiently large L, the entropy only depends on the density of
states at some high energy E = L · e(n) in the spectrum.

The microcanonical entropy per site S(e)/L is displayed in figure 13 for the triangular
and square lattice (half-infinite cylinders with L = 28). Some (finite-size) oscillations are
visible in the triangular case and can be interpreted as the successive energy ‘bands’
corresponding to 0, 2, 4, . . . , spin flips in the boundary state. These oscillations will be
smeared out in larger systems, however.
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Rényi entanglement entropies in quantum dimer models: from criticality to topological order

Figure 14. Coefficient of the logarithmic term in the Rényi entropy for the strip
geometry, as a function of the Rényi parameter n. This term is extracted from a
fit Sn = aL + b ln L + c + d/L on the systems sizes L − 6, L − 4, L − 2, L. Three
values L = 14, 26 and 38 are shown. The data is consistent with the CFT results.
For n ≤ nc = 1, the logarithmic contribution is approximately ∼ −0.25 (see [18]).
For n > nc it is close to zero as discussed in [31].

5. Long strip geometry

The triangular lattice can also be constructed with open boundary conditions in the x
direction. The geometry is no longer that of a cylinder but a long strip. In such a situation
the leading term in the entropy is still proportional to the width of the strip Lx = L, but
the sharp corners also contribute to the subleading constant and it is not possible to
extract the topological entropy for t > 0. The critical case is more interesting, because
the first subleading correction is now a logarithm of the width. The latter was originally
predicted to be − ln(L)/4 by Fradkin and More [25] (an application of the Cardy–Peschel
formula [42] which describes the universal logarithmic contribution of sharp corners to
the free energy in a CFT). These terms have recently been observed numerically in the
closely related Shannon entropy of open critical spin chains [30, 31].

In figure 14 we show the coefficient of the ln(L) term as a function of the Rényi index n
for the square lattice dimer wavefunction with open boundary conditions. The prediction
of Fradkin and More, −1

4
, is verified up to n � 1. For larger values of n the logarithmic

term vanishes. This is a manifestation of the boundary phase transition discussed in [31].
Indeed, above nc the compactness of the height field can no longer be ignored since
a vertex operator cos(dh/r) (with d an integer) becomes relevant at the boundary. The
value of d can be obtained by looking at the microscopic configuration |imax〉 with maximal
probability. Contrary to the case of the XXZ chain, this configuration is non-degenerate:
d = 1 in the notation of [31]. Since the Luttinger parameter R is equal to 1 for the
dimer problem (free fermions), the analysis of [31] immediately gives nc = d2/R = 1, in
agreement with the present numerics. Above nc the universal contribution to the entropy
is that of a single ‘flat’ height configuration. As in the XXZ chain, this flat configuration
does not correspond to a simple Dirichlet boundary condition around A in the continuum
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Figure 15. Configuration |imax〉 with the maximal probability on the square
lattice and a compatible dimer covering of the rectangular region A. The
microscopic heights are indicated in units of 1

2πr. When turning clockwise around
a site of the even (resp. odd) sublattice the height changes by +1 (resp. −1)
when crossing an empty bond and changes by −3 (resp +3) when crossing a
dimer. The lower horizontal boundary of A has a coarse-grained height which is
‘flat’, with an average height equal to 1

2(0+1) = 1
2 (red). The vertical boundaries

have a coarse-grained height equal to 1
2(1 + 2) = 3

2 (green). In the continuum
limit there is a height shift δ = ±1

2πr at each corner of A.

limit. Indeed, the (coarse-grained) height is shifted by an amount δ = 1
2
πr with respect

to the vertical boundaries of the lattice (see figure 15). As in the XXZ chain situation,
this height shift produces a logarithmic term which exactly compensate the logarithmic
terms coming from the Cardy–Peschel angles, hence the absence of a logarithm in the
Rényi entropy when n ≥ nc = 1.

6. Kitaev–Preskill construction

As discussed in section 4 the cylinder geometry allows us to extract the subleading entropy
term in a rather straightforward way, by a simple fit of Sn(L) on (at least) two system
sizes. However, the original proposals [7, 6] were to extract the topological entanglement
entropy from a single and large planar system. There, the subsystems on which the
entanglement entropy are computed cannot have a straight boundary and necessarily have
corners, etc. These corners (as well as the curvature) also contribute to the entanglement
entropy by a (non-universal) amount of order one and therefore need to be subtracted.
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Figure 16. Geometries required for the computation of S
(ABC)
n , S

(AB)
n and S

(A)
n

at radius ρ = 4.5. They have Nb = 30, 29 and 19 boundary sites (in red),
respectively.

The subtraction scheme proposed by Kitaev and Preskill [6] is based on the following
combination of entropies (see figure 16):

Stopo
n = S(ABC)

n − S(AB)
n − S(BC)

n − S(AC)
n + S(A)

n + S(B)
n + S(C)

n . (48)

The first numerical implementation of this subtraction idea was done in the RK dimer
wavefunction at t = 1 and n = 1 [25]. Some other recent works investigated the
n = 2 case using quantum Monte Carlo on a Bose–Hubbard model [43] and variational
quantum Monte Carlo on projected spin liquid wavefunctions [44]. Here we extend
the results of [25] on dimer RK wavefunctions for several values of t and n, and with
finite areas A, B and C embedded in an infinite plane. The results are shown in
figure 17. Provided t is not too small (i.e. the dimer–dimer correlation length is
not too large), the Kitaev–Preskill construction gives an entropy constant equal to
− ln(2) with high precision, as expected. Still, for the same numerical effort (boundary
length), the convergence turns out to be slower than with the cylinder geometry (see
figure 5).

Equation (48) was originally designed to probe a massive wavefunction, but it is
also natural to consider the limit t → 0 where the wavefunction becomes critical (and
restricting to n < nc for simplicity).

Each term in equation (48) corresponds to a subsystem Ω = ABC, AB, . . ., which is
topologically equivalent to a disc, but possibly with some sharp corners. For each such
subsystem, we wish to use a formula derived in [31]:

Sn(Ω) =
1

1 − n

[
ln

(Znκ

ZD
nκ

)
− n ln

(Zκ

ZD
κ

)]
, (49)

where Z is a free-field partition function on the whole system and ZD is the partition
function with Dirichlet boundary condition imposed at the boundary of Ω (thus
disconnecting Ω and Ω̄). κ is the bare stiffness and the first term should be evaluated
with a modified stiffness κ′ = nκ.4

By construction, the non-universal contributions proportional to the boundary length
will drop out of the KP combination. Next, we consider the logarithmically divergent
terms which come from the sharp corner contributions to the free energies. Each corner
with interior angle α gives a contribution F (α) = 1

24
(α/π − π/α) ln(L/l0) to the free

4 This formula was originally derived in the case where Ω is a half-infinite cylinder, but the argument probably
applies to the present geometries as well.
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Figure 17. Top left: critical case t = 0. Top right: t = 0.3. Bottom left: t = 0.7.
Bottom right: t = 1. In each case, −Stopo

n / ln 2 is shown for n = 0.5, 0.8, 1, 1.5
and 2 as a function of the radius ρ.

energy, where L is the typical scale of the boundary and l0 some microscopic cutoff [42].
To apply equation (49) what needs to be computed is the free energy difference between
that of the whole system and that where Ω and Ω̄ have been disconnected (Dirichlet
boundary condition). So, in the disconnected term, a sharp corner of angle α in Ω
will also contribute as a sharp corner of angle 2π − α (in Ω̄). The contribution to
Sn is thus δSn = F (α) + F (2π − α) = 1

24
(2 − (π/α) − π/(2π − α)) ln(L/l0), which

is by construction symmetric under the exchange α ↔ 2π − α. Then it is easy to
check that, in the spatial decomposition implied by (48), each angle appearing in some
+SΩ will cancel out with another one (with the same angle or its complement) in
−SΩ′ .

However, as already mentioned in [43], this is only true for the leading (logarithmically
divergent) part, because there is no simple reason why the microscopic length scales l0
should all be the same. We thus expect some constant (non-divergent) and non-universal
contribution to the entropy when t = 0.

References [25, 26] mentioned that the entanglement entropy of a disc Ω of radius
R embedded in a larger disc Ω̄ of radius L could have a (very slowly) diverging term
∼ ln(ln(L/R)) for a critical RK wavefunction. However, in the lattice (dimer) version of
the RK state we consider, it is easy to show that the entropy must be finite when L → ∞
while keeping R fixed. The argument is as follows: the (von Neumann) entropy S1 of a
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subsystem can be expressed using the probabilities pi of its boundary configurations:

S1 = −
N∑

i=1

pi ln(pi) (50)

where N is the number of possible microscopic configurations at the boundary of Ω. If
the boundary has a finite length ∼R, N must be finite with ln N ∼ R. As a consequence,
since the entropy is bounded by lnN , we have S1 � R. In other words, the entanglement
entropy cannot exceed the boundary law for RK states. This bound does not involve
the size of the outer system Ω̄ and none of the entropies appearing in equation (48) can
diverge when taking the outer system to its thermodynamic limit. Why the argument
of [25] does not apply to this quantity in lattice RK states is, however, unclear to us. But
in any case Stopo(R) cannot diverge when taking L → ∞ at fixed R, whatever the lattice
RK state provided it has a finite number of states per site. This is indeed confirmed by
our numerical estimations of Stopo(R) which are performed directly in the thermodynamic
limit L = ∞ and which gives finite values for finite values R. Although the system
sizes (R) are too small to observe the true large-R behavior for t = 0 (square lattice),
the argument above concerning the corner contribution indicates that it is very likely a
non-universal number.

7. Summary and conclusions

Thanks to some extensive use of the Pfaffian solution of the classical (2d) dimer model, we
have performed exact calculations of the entanglement entropy and entanglement spectra
of some dimer RK states on large subsystems. Using the cylinder and the Kitaev–Preskill
geometries we recovered the topological entanglement entropy of the Z2 phase, − ln(2),
with high accuracy. As expected, this value not only holds for the triangular lattice RK
wavefunction, but is in fact independent of the fugacity t > 0. We also analyzed the
scaling close to the critical point at t = 0, as well as the behavior for large values of the
Rényi index n. In particular, we proved for n → ∞ that the subleading entropy constant
is − ln(2). Thanks to its translation-invariant boundary, the cylinder geometry gives
smaller finite-size effects and therefore a much more precise estimation of the topological
entanglement entropy than the KP set-up (for a given length of the subsystem boundary).
For this reason, it may be preferred in future numerical studies (exact diagonalization or
quantum Monte Carlo) looking for topological ground states in realistic lattice models.

The entanglement spectra were also computed in the cylinder geometry, and the
presence of a unique ground state and a finite gap (whatever the fugacity) showed that
for these states, contrary to naive expectations, the topological (or critical) nature of the
phase is not apparent in the low-energy part of the entanglement spectrum. Simpler Z2

wavefunctions such as that of the Toric Code [13] (or that of [14]) do not allow us to learn
much about the structure of the entanglement spectrum. Indeed, in those states with
vanishing correlation length all the non-zero eigenvalues of the reduced density matrix are
exactly degenerate (no n dependence of the Rényi entropy). From this point of view,
the dimer states we consider offer an interesting compromise between the possibility
to do exact calculations on large systems and a non-trivial entanglement spectrum.
Extending these calculations to other states with richer topological structure, like string-
net wavefunctions [45], could be a promising direction of research.
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Appendix A. Green function elements for an infinite cylinder

A.1. Diagonalization of the Kasteleyn matrix

We wish to diagonalize the Kasteleyn matrix by a Fourier transform for Ly → ∞. To do
so we must distinguish between two sublattices (see figure 3):

L0 = {(2xux + yuy)|0 ≤ x < Lx|2, 0 ≤ y < Ly} (A.1)

L1 = {(2x + 1)ux + yuy|0 ≤ x < Lx/2, 0 ≤ y < Ly}. (A.2)

We denote by N = LxLy the number of sites. Then we define a new basis:

|k, 0〉 =
1√
N/2

∑

r0∈L0

e−ik·r0|r0〉 (A.3)

|k, 1〉 =
1√
N/2

∑

r1∈L1

e−ik·r1 |r1〉 (A.4)

The Kasteleyn matrix satisfies antiperiodic boundary conditions in the x direction, and
since Ly → ∞, we can also assume antiperiodic boundary conditions in the y direction.
The appropriate wavevectors are the k = kxux + kyuy with

kx ∈ Kx =

{
(2j + 1)π

Lx

∣∣∣∣ j = 0, . . . , Lx/2 − 1

}
(A.5)

ky ∈ Ky =

{
(2j + 1)π

Ly

∣∣∣∣ j = 0, . . . , Ly − 1

}
. (A.6)

In the new basis, the Kasteleyn matrix takes the following simple form:

Kαβ(k) =

(
2i sin ky 2i sin kx + 2t cos(kx + ky)

2i sin kx − 2t cos(kx + ky) −2i sin ky

)
, (A.7)

and can easily be inverted:

K−1
αβ (k) =

1

det [Kαβ(k)]

( −2i sin ky −2i sin kx − 2t cos(kx + ky)
−2i sin kx + 2t cos(kx + ky) 2i sin ky

)

(A.8)

with

det [Kαβ(k)] = 4 sin2 kx + 4 sin2 ky + 4t2 cos2(kx + ky). (A.9)

For two sites r = xux + yuy and r′ = x′ux + y′uy respectively in sublattices α and β, the
Green function element is

K−1
r,r′ =

1

πLx

∑

kx

e−ikx(x′−x)

∫ 2π

0

dky K−1
αβ(k)e−iky(y′−y). (A.10)

In this equation, the integral on dky can, in principle, be done explicitly for any y′ − y,
as will be shown in appendix A.2. To compute the entanglement entropy in the cylinder
geometry |y′ − y| does not, however, need to be greater than 2, whereas it can attain 3 in
the strip geometry.
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A.2. Green function elements

The computation of Green functions element requires the evaluation of integrals of the
form

Cp(kx) =

∫ 2π

0

cos(p ky)

4 sin2 kx + 4 sin2 ky + 4t2 cos2(kx + ky)
dky (A.11)

Sp(kx) =

∫ 2π

0

sin(p ky)

4 sin2 kx + 4 sin2 ky + 4t2 cos2(kx + ky)
dky, (A.12)

with p an even integer (otherwise the integrals are simply zero by symmetry). Both
integrands are π-periodic and, following Bioche’s rules, we can make the change in
variables u = tan ky. We get

Cp(kx) =
1

2

∫ +∞

−∞

Tp[(1 + u2)−1/2] du

u2[1 + (1 + t2) sin2 kx] − ut2 sin(2kx) + sin2 kx + t2 cos2 kx

(A.13)

Sp(kx) =
1

2

∫ +∞

−∞

u(1 + u2)−1/2 Up−1

[
(1 + u2)−1/2

]
du

u2[1 + (1 + t2) sin2 kx] − ut2 sin(2kx) + sin2 kx + t2 cos2 kx

(A.14)

where Tp(x) and Up−1(x) are the Chebyshev polynomials of the first and second kind,
respectively:

Tp(cos θ) = cos pθ (A.15)

Up−1(cos θ) =
sin pθ

sin θ
. (A.16)

For p even Tp(−x) = Tp(x) and Up−1(−x) = −Up−1(x). Therefore, both integrands
in equations (A.13) and (A.14) are rational functions of u, as it should be. Cp and Sp

can then be calculated by residue. Closing the contour by a large circle in the upper-half
plane, two poles will contribute to the integral. The first pole is at

u =
t2 sin kx cos kx + i

√
t2 + sin2 kx + sin4 kx

1 + (1 + t2) sin2 kx

(A.17)

and is of order 1. The second one at u = i is there if p �= 0 and is of order p/2. Although
the residue calculation for any even p is, in principle, straightforward, the procedure
becomes more and more cumbersome when p gets larger. Only for p = 0 do we get a
simple (known [16]) result:

C0(kx) =
π/2√

t2 + sin2 kx + sin4 kx

. (A.18)

From these we can get access to all the Green function elements. The simplest are along
the same horizontal line and only require the knowledge of C0:

K−1
2�ux

= 0 (A.19)

K−1
(2�+1)ux

=
1

Lx

∑

kx

sin kx sin(2 + 1)kx√
t2 + sin2 kx + sin4 kx

. (A.20)
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For the cylinder geometry, the knowledge of C0, C2 and S2 is sufficient. For the strip
geometry, C4 and S4 are also needed. To compute the entanglement entropy in the Kitaev–
Preskill geometry, it is easier to evaluate the double integral (Lx → ∞) in equation (A.10)
numerically.

Appendix B. Closed-form formula for Sn=∞ in the cylinder geometry

As explained in the text, the maximum probability corresponds to a simple configuration
with all boundary spins up. Then, a natural way to proceed would be to use equation (27)
and try to evaluate the resulting determinant. This method is most certainly viable, but
we will follow another path. In the dimer language, the probability we are looking for is
given by

pmax = lim
Ly→∞

[Zcyl(Lx, Ly/2)]2

Zcyl(Lx, Ly)
, (B.1)

where Zcyl(Lx, h) counts the number of dimer coverings on a finite cylinder of
circumference Lx and height h. Despite the loss of translational invariance in the y
direction, Zcyl can still be evaluated in closed form, as is shown in section B.1. From this
pmax can easily be calculated, see appendix B.2.

B.1. Dimer coverings on a finite cylinder

Let Zcyl be the partition we are looking for. Using (skew) translational invariance along
the x axis, one gets (recall Kx = {(2m − 1)π/Lx, 1 ≤ m ≤ Lx/2}):

Zcyl(Lx, Ly)
2 =

∏

kx∈Kx

det
[
K(x)

1≤i,j≤2Ly

]
. (B.2)

In other words, the Kasteleyn matrix is block-diagonal with Lx/2 blocks of size 2Ly.
Setting tx = teix and sx = 2i sin x

K(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 sx 1 tx 0
sx 0 −tx −1 0
−1 t̄x 0 sx 1 tx
−t̄x 1 sx 0 −tx −1
0 0 −1 t̄x 0 sx 1 tx
0 0 −t̄x 1 sx 0 −tx −1

−1 t̄x 0 sx 1 tx
−t̄x 1 sx 0 −tx −1

−1 t̄x 0 sx

−t̄x 1 sx 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.3)

Although it is not easy to diagonalize K(x), its determinant can be exactly evaluated using
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the perturbation trick. To do so, we introduce

K(x)
0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 sx 1 tx 0 −1 −t̄x
sx 0 −tx −1 0 t̄x 1
−1 t̄x 0 sx 1 tx
−t̄x 1 sx 0 −tx −1
0 0 −1 t̄x 0 sx 1 tx
0 0 −t̄x 1 sx 0 −tx −1

−1 t̄x 0 sx 1 tx
−t̄x 1 sx 0 −tx −1

−1 −tx −1 t̄x 0 sx

tx 1 −t̄x 1 sx 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.4)

This amounts to putting antiperiodic boundary condition along the y axis for the total

Kasteleyn matrix. K(x)
0 is block skew circulant, and it can be diagonalized in Fourier

space. In particular, its determinant can be easily evaluated:

detK(x)
0 =

∏

ky∈Ky

Δ(kx, ky) (B.5)

Δ(kx, ky) = 4 sin2 kx + 4 sin2 ky + 4t2 cos2(kx + ky), (B.6)

where Ky = {(2m − 1)π/Ly, 1 ≤ m ≤ Ly}. This allows us to express detK(x) as

detK(x)

detK(x)
0

= det

(
1 +
[
K(x)

0

]−1 [
K(x) −K(x)

0

])
= det M

(x)
4 (B.7)

K(x) − K(x)
0 is a matrix with only eight non-zero elements, and using elementary row–

column manipulations, the determinant can be reduced to a 4 × 4:

M
(x)
4 =

⎛

⎜⎜⎝

z −a w −ib
−a z ib −w
−w̄ ib z̄ a
−ib w̄ a z̄

⎞

⎟⎟⎠ (z, w, a, b) ∈ C × C × R × R. (B.8)

After some algebra, we get the following formulae for the coefficients:

z =
1

2
+

2

Ly

∑

ky

sin2 kx + i [sin(2ky) − t2 sin(2kx + 2ky)]

Δ(kx, ky)
(B.9)

a =
2t

Ly

∑

ky

cos kx

Δ(kx, ky)
(B.10)

w =
2it

Ly

∑

ky

sin kx e−ikx

Δ(kx, ky)
(B.11)

b =
2

Ly

∑

ky

sin kx

Δ(kx, ky)
. (B.12)
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The number of dimer coverings on the triangular lattice with cylindrical boundary
conditions is then given by

Zcyl(Lx, Ly) =
∏

kx

⎧
⎨

⎩det
(
M

(x)
4

)
×
∏

ky

Δ(kx, ky)

⎫
⎬

⎭

1/2

. (B.13)

Evaluating the determinant, we finally get the following closed formula for the partition
function:

Zcyl(Lx, Ly) =
∏

kx

⎧
⎨

⎩A(kx) ×
∏

ky

[Δ(kx, ky)]
1/2

⎫
⎬

⎭ , (B.14)

with

A(kx) =
(
t2 + sin2 kx + sin4 kx

)
d(kx)

2 + (sin2 kx − t cos kx)d(kx) + 1/4 + ε(kx)
2

d(kx) =
2

Ly

∑

ky

1

Δ(kx, ky)

ε(kx) =
2

Ly

∑

ky

sin(2ky) − t2 sin(2kx + 2ky)

Δ(kx, ky)
. (B.15)

B.2. Exact formula for Sn=∞

The maximum probability is in the thermodynamic limit given by

pmax = lim
Ly→∞

[Zcyl(Ly/2, Lx)]
2

Zcyl(Ly, Lx)
(B.16)

=
∏

kx

(
lim

Ly→∞
A(x)

)
. (B.17)

Equation (B.17) follows from equation (B.16) using Euler–Maclaurin’s formula on the
ratio of terms involving Δ(kx, ky), coming from equation (B.13). Using equation (A.18),
we also have

lim
Ly→∞

d(kx) =
1

2
√

t2 + sin2 kx + sin4 kx

, (B.18)

while limLy→∞ ε(kx) = 0 because the integrand has a symmetry center solution of
sin(2ky) = t2 sin(2kx + 2ky). In the end we obtain

S∞ = − ln pmax = −
1≤m≤L/2∑

kx=(2m−1)π/L

ln

(
1

2
+

1

2

sin2 kx − t cos kx√
t2 + sin2 kx + sin4 kx

)
. (B.19)
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B.3. Asymptotic expansion

At t = 0, the subleading constant in the L → ∞ asymptotic expansion just follows from
the Euler–Maclaurin formula. We find

s∞(t = 0) = 0. (B.20)

Some additional care must be taken in the case t > 0. The function

f(k) = − ln

(
1

2
+

1

2

sin2 k − t cos k√
t2 + sin2 k + sin4 k

)
(B.21)

actually diverges as f(k) ∼ −2 ln k—independent of t—when k → 0. The asymptotics
can be obtained by applying the Euler–Maclaurin formula on

∑
k[f(k) + 2 ln k] while

applying Stirling’s formula on the remaining ‘linearized’ term −∑k 2 ln k. Doing so we
finally obtain the topological term

s∞(t > 0) = − ln 2. (B.22)

Only the linearized term actually contributes to the constant. Indeed, it is universal and
should not be affected by the short-distance (i.e. high momentum k) details of the model.
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